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A method is proposed for the adaptive multi-scale representation of road networks for location-based
service applications. The method is able to automatically set a feasible scale according to geographic
scope, the complexity of the road network, and the distance to the viewer. Moreover, the method
achieves multi-scale representations of road networks on a display screen. The key steps of the method
and the initial experimental studies undertaken to evaluate its feasibility are described.

@ 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Visualization of spatial data (e.g., images, vector data) is of vital
importance for spatial recognition, augmented reality, and many
other different fields of application. Among these are location-
based services (LBS) and car navigation systems, the typical
characteristics of which are that the representation medium of the
spatial data relies on mobile devices with small screens. As a
consequence and because of the nature of mobile devices, display,
particularly on small mobile devices, cannot simply rely on the
techniques designed for traditional web or desktop applications.

The key factors affecting the display on small mobile devices
can be summarized as follows:

e Data presentation and exploration on mobile devices are
strongly affected by the small size and resolution of the
displays.

e The computing capability is weak and the limited storage
space implies that large datasets cannot be loaded on the
device.

e Frequent zoom infout and pan operations are tedious and
cognitively complicated due to global context loss.

To communicate spatial data in both overview and detail, the
system has to allow the user to flexibly zoom in and out (Brenner
and Sester, 2005). Map data, particularly, road networks, are

* Correspondence address: State Key Laboratory of Information Engineering in
Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079,
China.

E-mail address: qqli@whu.edu.cn

0098-3004/% - see front matter @ 2009 Elsevier Ltd. All rights reserved.
doi: 10.1016fj cageo.2008.12.009
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critical to routing, positioning, and guided navigation in car
navigation systems. Extensive research has been done regarding
the visualization of spatial data on small mobile devices (e.g.,
Harrie et al., 2002; Alan et al., 1996). Brenner and Sester (2005)
implemented a method in which generalization operators were
used for displaying building polygons on small mobile devices.
Reichenbacher (2003) proposed a framework for mobile visuali-
zations. Agrawala and Stolte (2001) developed techniques for the
generalization of cartographic data that improved the usability
of maps for road navigation on mobile devices. Their techniques
are based on cognitive psychology research and are meaningful
for personal navigation, as all turning peints aleng the route are
shown and less attention is paid to the length and direction of
each road. Dong et al. (2007} also proposed a method to generate
semantic road maps for mobile navigation. In their approach,
semantic road maps are generated by distorting road lengths and
angles and by simplifying road shapes. However, the maps may be
too large to be displayed on the small screens of mobile devices.
Several studies have explored the generation of variable-scale
maps based on the principles of the Fisheye view (Sarkar and
Brown, 1992), which shows a detailed representation of a circular
area surrounding a point of interest (POI), e.g.. a mouse point,
whilst using a small scale and applying generalization and
distortion operations to fit the remaining map area in the
available space. However, with this technique road maps cannot
be displayed on the screens of car navigation systems.

Fig. 1 shows a planned route consisting of a long and straight
road. Suppose that a set of generalization operators are applied to
generalize the read network. The generalized road map may still
be too large to be displayed on a small screen, and the user might
lose the context based on such a map. Thus, neither a generalized
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A Sensor-Fusion Drivable-Region and
Lane-Detection System for Autonomous Vehicle
Navigation in Challenging Road Scenarios

Qingquan L1, Long Chen, Ming Li, Shib-Lung Shaw, and Andreas Niichter, Member, IEEE

Abstract—Autonomons vehicle navigation is challenging since
various types of road scenarios in real urban environments have
to be considered, particularly when only perception sensors are
ased, without position information. This paper presents a novel
real-time optinual-drivable-region and lane detection system for
autonomous driving based on the fusion of light detection and
ranging (LIDAR) and vision data. Our system nses a multisensory
scheme to cover the maost drivable areas in front of 2 vehicle.
We propose a feature-level fusion method for the LIDAR and
n data and an optimal selection strategy for detecting the best
drivable region. Then, a conditional lane detection algorithm is
selectively executed depending on the antomatic classification of
the optimal drivable region. Our system successfully handles both
strnctured and nnstructured roads. The results of several exper-
iments are provided to demonstrate the reliabilily, effectiveness,
and robustness of the system.

Index Terms—Autonomous vehicles, drivable-region detection,
lane defection, light detection and ranging (LIDAR}, multilevel
feature fusion, vision.

I INTRODUCTION

OAD/LANE detection is a challenging task and a critical
Rissuc in autonomous vehicle navigation. Particularly in
situations where no position information is available, a navi-
gation systern must be aware of the different kinds of tervain
and road situations without the need for user input. This paper
presents areal-time-capableroad and lane detection system that
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deals with various kinds of challenging situations in real-world
urban scenarios.

The complexity of urban environments is mainly due to the
following factors.

1y Structured and unstructured roads occur alternately.
Fig. 1(by and (c) shows structured roads, and the
other subfisures show examples of roads without lane
markings.

Pavement uniformity cannot be always taken as given.
There is interference from many causes, such as heavy
shadow [¢f. Fig. 1{d) and ()], pavement distress, dirt,
and puddles. Fig. 1(e) shows a road where oval stones
and concrete are present, and Fig. 1(b) shows a road that
has different colors and some dirt on it.

The appearance of a road may frequently change hecause
of weather conditions, e.g., due to rain or snow [see
Fig. 1{g)], and it also changes depending on the time of
the day [see Fig. 1(0)].

The curvature of a road is not always as low as it is in
highway scenarios. Here, we use “highway™ in the sense
of a paved main direct road, in contrast to a minor road.
Fig. 1{a) shows a sharp turn where the camera at the front
does not cover the whole turmn.

2)

o

3

2

4

=

Focuging on these challenging situations, we propose a mul-
ticue fusion-based system. By efficiently using several laser
scanners and cameras, our perception system figures out the
optimal drivable region and detects lane markings if necessary.
Our real-time road and lane detection system is distingnished
from related approaches in the following ways.

>

Our system reliably deals with challenging urban enwiron-
ments, including both structured and unstructured roads,
in real time. We estimate whether we need to do lane
detection based on the preposed fusion method, without
manual switching, or use information from a GPS and
a geographic information system (GIS). In the case of
structured roads, the lanes and the road edges are located.
For unstroctured roads, the system detects the drivable
region and the boundaries of the road.

A tusion-based method is proposed. Feature-level fusion
is used for drivable-region detection. The lane detection
method is restricted to the optimal drivable region and is
only applied when the road is estimated to be wide enough.
The proposed strategy extracts the optimal drivable region
in front of the vehicle instead of recognizing every pixel of
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Abstract: Reconstructing three-dimensional model of the pylon from LiDAR (Light
Detection And Ranging) point clouds automatically is one of the key techniques for
facilities management GIS system of high-voltage nationwide transmission smart grid.
This paper presents a model-driven three-dimensional pylon modeling (MD3DM) method
using airborne LiDAR data. We start with constructing a parametric model of pylon, based
on its actual structure and the characteristics of point clouds data. In this model, a pylon is
divided into three parts: pylon legs, pylon body and pylon head. The modeling approach
mainly consists of four steps. Firstly, point clouds of individual pylon are detected and
segmented from massive high-voltage transmission corridor point clouds automatically.
Secondly, an individual pylon is divided into three relatively simple parts in order to
reconstruct different parts with different strategies. Its position and direction are extracted
by contour analysis of the pylon body in this stage. Thirdly, the geometric features of the
pvlon head are extracted, from which the head type is derived with a SVM (Support Vector
Machine) classifier. After that, the head is constructed by seeking corresponding model
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Abstract

Conventional human visual pavement distress
detection method is very costly, time-consuming, labor-
intensive, and is often dangerous due to exposure to
traffic. It possesses various drawbacks such as being
unable to provide meaningful quantitative information
and with a long periodic measurement. In this paper, a
novel pavement image-thresholding algorithm based
on neighboring difference histogram method (NDHM)
is proposed. The main idea of the proposed method is
based on the facts that: (1) the distressed pixels in
pavement images are darker than their surroundings
and continuous; (2) the thresholding value is strongly
related with the image standard deviation. In this
method an objective function for maximizing the
divergence between the two classes is constructed. The
paper compares the new method with the classical
discriminant analysis method of Otsu and the entropic
method of Kapur et al. The experimental results have
demonstrated that the distresses are segmented from
the background correctly and effectively.

1. Introduction

Pavement condition data collection style has
transformed from manually to automatically because of
the development of computer technologies. digital
image acquisition, and multi-sensors technologies. but
the complexity of the digital image processing always
made the data processing come to the bottle-neck of
the application system. Many researchers have paid a

LIU Xianglong
School of Remote Sensing and Information
Engineering, Wuhan University, 129 Luoyu
Road, Wuhan, 430079, PR China
Transportation Research Center, Wuhan
University, 129 Luoyu Road, Wuhan, 430079,
PR China
E-mail:longbao2004@126.com

great deal of attention to automated pavement cracking
detection through image processing.

Over the past several decades, a number of
approaches for automatic pavement cracking detection
have been proposed which can be divided into two
kinds of method classes: the image edge detection
based class and the image arca segmentation based
ones. At the carly stage of the image-based pavement
cracking detection, several kinds of edge detection
methods were proposed such as soble-based algorithm
(Li. 2003), Wavelet-based canny algorithm (Bahram
Javidi. el al. 2003), snake-based algorithm (Liang-
Chien Chen, et al. 2001). and Dijkstra-based algorithm
(Seung-Nam Yu. et al. 2006). they have been shown
successful under limited condition according to their
experimental results. However, due to the highly
textured nature of road surface, which resulted in
highly noisy pavement images, the edge detection
based approaches can not get reliable results. In recent
years. researchers pay more attention to image area
segmentation based automatic pavement cracking
detection, and especially pavement image thresholding.
Image thresholding is the process of classifying image
gray values into two or more classes. The gray level
histogram is usually the starting point for image
classification. however, the thresholding methods that
use the shape of gray-level histogram suffer many
difficulties. Entropy may be used as a criteria function
of thresholding (J.N. Kapur, et al., 1985). Thresholding
methods based on the entropy function do not always
give a good solution. Sometimes, results obtained by
the entropic thresholding methods are found to be
biased. And other criteria can be found to be useful for
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The complexity of building models directly affects the application eflficiencies of 3D urban maps. To
address the challenges of building models with various structures, we propose a structural simplification
method in this paper. The geometric structures of building models are classified into three categories:
embedded structures, compositional structures, and connecting structures, which can be extracted
separately through convexfconcave analysis, Some specific rules are proposed for the simplification of
geometric structures, and the building models are suggested to be simplified progressively. The robust-
ness and efficiency of the method are demonstrated by experiments, and the applications of the Levels of
detail of the building models are illustrated.

Crown Copyright © 2013 [nternational Society for Photogrammetry and Remote Sensing, [nc. (ISPRS)

Published by Elsevier B.V. All rights reserved.

1. Introduction

Due to technological advances in the fields of surveying and
computer graphics, 3D maps have become very popular in various
navigation applications, especially in urban environments (Grabler
et al., 2008). Building models are the most important elements of
3D urban maps, and their complexity directly affects the applica-
tion efficiency, Multi-resolution building simplification is recog-
nized as a common solution that satisfies the demands of
different application (Kriiger and Stahl, 1998). Many simplification
methods have been proposed out for specific types of building
models or specific applications (Meng and Forberg, 2006; Sester,
2007), but the simplification of 3D building models still remains
a challenge, particularly considering their variable structures {see
Fig. 1 for some examples). Researchers have tried to avoid this
problem by focusing on the preservation of features during model
simplification {Coors, 2001; Jiang et al., 2011), whereas we focus
directly on the structure in building models in this paper.

Compared with terrain and natural objects, the structures of
building medels are much more complicated, especially those of
landmarks. For examples, a modern building model usually has
countless windows on its walls, the balconies and chimneys of
country houses can differ from each other in thousands of ways,
columns are very common in Roman architectures, and artistic
architectures are always composed of the parts with unique
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shapes, such as pyramidal or gabled roofs. Some structures repre-
sent the detailed features of the building models, which are trivial
in representation, but other structures show the global shapes of
the models, which are important for recognition.

Given the integrity and consistency of structures in the building
model, we could not split each structure apart during simplifica-
tion and need to simplify similar structures simultaneously.
Extracting and grouping detailed structures for simplification and
maintaining the global shape of 3D building model in the process
of simplification are difficult problems. In this paper, we extracted
three types of geometric structures depending on the topological
relationships among components and we propose a structural sim-
plification method for 3D building models.

The remaining parts of this paper are organized as follows., We
review related work in Section 2. In Section 3, surface patch extrac-
tion algorithm is introduced as a preprocessing step to convert the
triangular model into the polygonal model. In Section 4, we discuss
the classification of the geometric structures of building models
and describe a robust geometric structure extraction method in de-
tail. Section 5 elaborates the structural simplification rules and
proposes a progressive simplification method for building models.
The experimental results are presented and discussed in Section 6.
Finally, Section 7 briefly concludes the paper.

2. Related work

3D building models have special mesh construction patterns
and application demands, but most simplification approaches for

rights



Decision fusion of very high resolution images for urban
land-cover mapping based on Bayesian network

Qingquan Li,* Jianbin Tac,” Qingwu Hu,® and Pengcheng Liu®
“Shenzhen University, Shenzhen Key Laboratory of Spatial Smart Sensing and Services,
Shenzhen 518060, China
Central China Normal University, School of Urban and Environmental Sciences,
Wuhan 430079, China
taojb@mail.cenu.edu.cn
“Wuhan University, School of Remote Sensing and Information Engineering,
Wuhan 430079, China

Abstract. Traditional image processing technigues have been proven to be inadequate for urban
land-cover mapping using very high resolution (VHR) remotely sensed imagery. Abundant fea-
tures such as texture, shape, and structural information can be extracted from high-resolution
images, which make it possible to distinguish land covers more effectively. However, the multi-
source characteristics of VHR images place significant demands on the classification method in
terms of both efficiency and effectiveness. The most often used method is vector stacking fusion,
in which a single classifier is trained over the whole feature space; statistical differences and
separability complementarities among different features are rarely considered. Hence, appropri-
ate feature fusion and classification of multisource features become the key issues in the field of
urban land-cover mapping. A novel decision fusion method based on a Bayesian network is
proposed to handle the multisource features of VHR. images which provide redundant or com-
plementary results. Subclassifiers are constructed separately based on multiple feature sets and
then embedded into the naive Bayesian network classifier (NBC). The final results are obtained
by fusing all the subclassifiers into the NBC framework. Experiments on aerial and QuickBird
images demonstrated that the performance of the proposed method is greatly improved com-
pared with vector stacking methods, and significantly improved compared with the multiple-
classifier systems and multiple kernels learning support vector machine. Moreover, the proposed
method has advantages in feature fusion of VHR images in urban land-cover mapping. © 2013
Society of Photo-Optical Instrienentation Engineers (SPIE) [DOL: 10.1117/1.IRS.7.073551)

Keywords: multisource features; decision fusion; Bayesian network; urban land-cover mapping.

Paper 12457 received Dec. 11, 2012; revised manuscript received Mar. 31, 2013; accepted for
publication Apr. 15, 2013; published online Jun. 3, 2013.

1 Introduction

Very high resolution (VHR) commercial satellite images have facilitated research into land-cover
mapping of urban areas. The maps generated from VHR images are important reference data for
urban development planning, emergency response, and disaster assessment etc. Improvements in
spatial resolution have made it possible to identify small structures such as houses or round-
abouts in dense urban areas. When analyzing VHR images, in addition to spectral character-
istics, spatial information, including image texture, shape, structure, and context information,
plays an increasingly important role in the classification process. As a matter of fact, it has
been demonstrated that both spatial and spectral information are required simultaneously to
achieve good classification performance.”> These different types of features, such as spectral,
textural and structural features, are usually combined to improve classification accuracy because
they provide complementary information.

In recent years, significant attention has been focused on multisource features fusion of VHR
images for urban land-cover mapping. Numerous algorithms have been proposed in the literature

0091-3286/2013/§25.00 © 2013 SPIE
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Abstract multi-resolution TIN model is an important issue in the contexts of visu-
alization, virtual reality (VR), and geographic information systems (GIS). This paper
proposes a new method for constructing multi-resolution TIN models with multi-
scale topographic features preservation. The proposed method is driven by a half-
edge collapse operation in a greedy framework and employs a new quadric error
metric to efficiently measure geometric errors. We define topographic features in a
multi-scale manner using a center-surround operator on Gaussian-weighted mean
curvatures. Experimental results demonstrate that the proposed method performs
better than previous methods in terms of topographic features preservation, and is
able to achieve multi-resolution TIN models with a higher accuracy.

digital terrain models, level of detail, differential-geometry, quadric error metrics, topographic feature

1 Introduction

The representation of digital terrain models at different levels of accuracy and resolution has an
impact on applications such as geographic information systems (GISs)m, virtual reality (VR),
progressive transmission of spatial datal®, mobile visualizations, and Web-GIS®. Multi-resolution
terrain models allow for representation, analysis and manipulation of terrain data at variable
resolutions, and provide a promising solution for the progressive transmission of spatial data,
spatial data compression, mobile visualizations, and so on. However, the existing methods and
algorithms mainly focus on the accuracy and running times of generating the levels-of-details
(LoDs) of terrains. Less attention has been paid to features preservation of terrains, particularly at a
low resolution model. Suppose that the original terrain features are lost at a low resolution terrain
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ABSTRACT

This paper presents an off-line traffic prohibition sign detection approach, whose core is based on combination with the
color feature of traffic prohibition signs, shape feature and degree of circularity. Matlab-Image-processing toolbox is
used for this purpose. In order to reduce the computational cost, a pre-processing of the image is applied before the core.
Then, we employ the obvious redness attribute of prohibition signs to coarsely eliminate the non-redness image in the
input data. Again, a edge-detection operator, Canny edge detector, is applied to extract the potential edge. Finally,
Degree of circularity is used to verdict the traffic prohibition sign. Experimental results show that our systems offer
satisfactory performance

Keywords: traffic sign detection, color feature, shape feature, degree of circularity, Canny edge detector

1. INTRODUCTION

With the development of economic and society, the vehicle numbers and the incidents greatly increase years and years in
China. For car dnvers, correctly identifying traffic signs at right time and right place plays a crucial part in insuring
themselves and their passengers’ safe journey. Sometimes, due to changing weather conditions or viewing angles, traffic
signs are not easily to be seen until it is too late. Development of automatic systems for recognition of traffic signs is
therefore an important approach to improve driving safety . Although the detection and recognition of traffic signs has
been a problem studied by an important number of researchers in the world, it is necessary to research a special
algorithm to detect the Chinese traffic signs because of the difference of traffic signs in every country.

Any road signs use particular colors and geometric shapes to attract drivers’ attention. However, the difficulty of
developing traffic sign detection and recognition systems largely comes from several aspects. First, colors may fade after
long exposure to the sun, air pollution and weather condition. Moreover, paint may even flake or peel off, and signs may
get damaged. Second, surrounding environments widely vary, such as varying lighting conditions from day to night,
presence of shadows and occlusion and so on. Third, the signs may be slightly tilted, partially blocked by tree branches,
dirt, or posts, or incomplete due to corrosion, all of which provide severe challenges.

Recently, many techniques have been developed to detect road signs **. Pacheco et al® used to add special color
barcodes under road signs to help road sign recognition for vision-based systems. However, much time and resources
would be consumed to replace road signs, making this solution uneconomical. Escalera and Moreno® combined colors
and shapes to detect road signs. Aoyagi and Asakura ® presented genetic algorithms to detect road signs from gray-level
video imagery. Unfortunately, due to the discrete nature of crossover and mutation operators, optimal solutions are not
guaranteed. Chiung-Yao Fang et al’ employed the color video sequences to detect the road signs in complex traffic
scenes and the Kalman filter, as the tracking technique, to reduce the search time for road sign detection. Miura et al®
installed two cameras, one for wide-angle vision and the other for telephoto in the vehicle and developed a real time
traffic sign recognition system based on active vision and color and shape information. Its disadvantages included
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A Voronoi-based Hierarchical Graph Model of
Road Network for Route Planning

Qingquan Li and Zhe Zeng

Abstract— The road network is a key part of route planning,
the core function module of GIS-T. The better organization
of the road network is used, the higher performance of route
planning can be achieved. This paper proposes a Voronoi-based
hierarchical graph model of road network for route planning, It
constructs the hierarchical graph based on hierarchical spatial
reasoning and utilizes graph Voronoi diagram to associate
adjacent levels in hierarchical graph of road network. Because
of using graph Voronoi diagram, the hierarchical graph model
can make the hierarchical searching process simpler and more
efficient. The searching range is shrinked and the consume time
is decreased in the hierarchical route planning.

I. INTRODUCTION

At the core of any GIS-T(Geographic Information Systems
for Transportation) software are procedures or algorithms
for conducting analyse and solving routing problems within
a network [1]. The road network is a key component in
ITS navigation system, location based services which are
considered as applications of GIS-T software. The better
organization of the road network is designed, the higher
performance of route planning can be achieved. The hierar-
chy structure of road network is extensively applied to route
planning algorithm.

The approaches of constructing the hierarchy are based on
the following idea: The road network is primarily considered
as an original graph. The graph is divided into several parti-
tions. Then, the higher level subgraph is formed by all border
nodes and shortest paths between these partitions. The two
steps are recursively performed not until that the hierarchy
of road network can be completely formed. For example,
this idea can be found in [2], [3]. The HEPV model [2]
was proposed by Ning Jing and Yun-Wu Huang. To achieve
an effective fragmentation, they developed a partitioning
algorithm called spatial partitioning which clusters graph
links into partitions based on spatial proximity [4]. Spatial
partitioning takes advantage of ITS map characteristics such
as the grid-like (nearplanar) patterns, and the relatively short
distance for the majority of links. In HiTi graph model [3],
arbitrary shaped boundaries (e.g., political regional bound-
aries) partition a road map into a set of Component ROad
Maps (CROM). The CROM can be defined to contain a set
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of CROMs, thus creating a multilevel hierarchy. The HiTi
graph is a graph whose nodes are the boundary nodes of the
CROMs and edges are the path view and cut connections
of CROMs. The graph partition theory is mainly applied
into these approaches, however the hierarchical attribute of
road classes is rarely taken as a fundamental principle of
constructing hierarchy.

A hierarchical structure based on an abstraction from the
hierarchy of road classes and an algorithm which searches for
an optimal path in the sub-graph of the highest possible level
had been proposed by Adrijana Car and Andrew Frank [5].
This led to an efficient way-finding algorithm, even where
standard simple graph search algorithms for the shortest
path become inadequate. This hierarchical structure of the
road network is also extensively supported by the two main
vehicle navigation data formats, such as Kiwi and SDAL.
However, there are two factors ignored by this hierarchical
model. First, there is no criterion that the node, through
which we can start to search the higher neighboring level
sub-graph, can be decided at the beginning of the current
level searching. And this node is also the target node in
the current level searching. Second, because it is non-
determinate, the range of the searching will be uncertainty
in current level. In the worst case, the search range could
be extended to much larger. The Voronoi-based hierarchical
graph is put forward in this paper in order to solve this
problems.

In this hierarchical model, the road network is divided
into multi-level sub-graphs by road classes. The higher the
level is, the smaller the sub-graph is. The graph Voronoi
diagram [6] is used to construct hierarchical graph of road
network because the shortest path distance between the
nodes of the graph Voronoi region and its Voronoi node is
smaller than between these nodes and other Voronoi nodes
in the current level sub-graph. The current level sub-graph is
partitioned by the graph Voronoi diagram of which Voronoi
nodes are included by the higher-level neighboring sub-
graph. Therefore, the Voronoi node of the graph Voronoi
region, which exists in the current level sub-graph, should
be the one that we can start to search the higher level. At
the same time, the Voronoi node is also considered as target
node in current level route planning, so the route search range
can be limited by the heuristic strategy.

II. VORONOI-BASED HIERARCHICAL GRAPH
STRUCTURE

The Voronoi-based hierarchical graph is mainly based on
hierarchical spatial reasoning of road network and graph
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of Road Network for
Route Planning in Vehicle
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Abstract — Road network is a fundamen-
tal part of route planning in vehicle navi-
gation systems. In this paper two aspecls
are considered for hierarchical model of
road networks, which are data model and
graph model. The former aims to present
a hierarchical road network in vehicle
navigation systems. The latter model con-
structs a multi-level graph according to
the hierarchy traits of road network. Based
on these two aspects, a road network can
be better organized for route planning of
vehicle navigation systems.

I. Introduction
ver two decades, GPS-assisted equipments
have come to pervade many aspects of ITS. As
an application among them, vehicle navigation
technique is facilitating our daily lives. When
driving to a place you wanted to go, it can accurate-
ly locate your position, rapidly calculate an optimal

Digital Object ldentifier 10.1109/MITS.2009.933860
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route, and then give your correct guidance through
voice broadcast. The optimal route computation plays
a key role in the above process. The conventional pla-
nar routing algorithms are time-consuming and inef-
ficient when applied to large road networks. And they
neglect hierarchy, which is a distinguishing feature of
road network. The natural hierarchy can ‘divide and
conquest’ large road network while route planning
algorithms employ it. Most hierarchical approaches
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Optimal paths computed by conventional path-planning algorithms are usually not “optimal” since real-
istic traffic information and local road network characteristics are not considered. We present a new
experiential approach that computes aptimal paths based on the experience of taxi drivers by mining
a huge number of floating car trajectories. The approach consists of three steps. First, routes are recov-

K‘J’“’“’dff ered from original taxi trajectories, Second, an experiential road hierarchy is constructed using travel
:‘l"‘j’ﬁ"ﬂ::]gk frequency and speed information for road segments. Third, experiential optimal paths are planned based
H?:m:;y orl on the experiential road hierarchy. Compared with conventional path-planning methods, the proposed

method provides better experiential optimal path identification. Experiments demonstrate that the travel
time is less for these experiential paths than for paths planned by conventional methods. Results obtained
for a case study in the city of Wuhan, China, demonstrate that experiential optimal paths can be flexibly

Taxi trajectory
Navigation system

obtained in different time intervals, particularly during peak hours.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Navigation systems are an important component of intelligent
transportation systems and have become a standard device in
vehicles, cell phones and other mobile devices. Many web-based
mapping services also provide navigation tools for regular users.
Path planning, a core component of various navigation applica-
tions, involves identification of the shortest path for any given
origin-destination pair in a directed graph in which a non-negative
weight is applied to the length or travel time for road segments.
The Dijkstra (1959) algorithm and label correcting (LC) algorithm
(Bellman, 1958) routing are two classical methods used to solve
the shortest path problem. Variants of these algorithms have
been extensively studied (Cherkassky et al., 1996; Thorup, 2004).
Depending on whether the edge weights are static or dynamic,
we can classify theoretical computation schemes for the short-
est path into two categories. In recent years, researchers realized
that preprocessing of road networks can significantly improve
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the performance of the Dijkstra (LS) algorithm (Gutman, 2004;
Goldberg and Harrelson, 2005; Kohler et al., 2006; Sanders and
Schultes, 2006). Preprocessing is usually performed for road net-
works with static hierarchies. Computation for static networks
can yield the exact shortest paths using Euclidean distance-based
measurements. Computation for dynamic traffic conditions is a
theoretically complicated operations research problem (Ahuja et
al., 1993). The uncertainty of real traffic situations means that
the best search results are not necessarily computed in reality.
Finding the exact shortest path in road networks with dynamic
traffic conditions {dynamic road networks) is a non-deterministic
polynomial-time hard (NP-hard) problem {Ahuja et al.,2003), A few
simplifying assumptions can be made, such as transformation of
dynamic networks to time-dependent networks using the first in,
first out (FIFO) condition. The shortest path in a FIFO network can
be computed using the label algorithm ( Kaufman and Smith, 1993).
However, the theoretical assumptions do not completely hold in a
real road network. Thus, there is a gap between theoretical algo-
rithm research and real-world applications.

Taxi drivers usually disregard the planned routes computed by
navigation systems. They tend to adopt their own “best” routes
according to their driving experience. Very often, their solutions
are more cost-effective (less travel time and lower costs) than the
shortest paths identified by traditional path-planning algorithms.
Their experience implicitly comprises their familiarity with local
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Pavement crack types provide important information for making paverment maintenance strategies. This paper proposes an
automatic pavement crack classification approach, exploiting the spatial distribution features (i.e., direction feature and density
feature) of the cracks under a newral network model. In this approach, a direction coding (D-Coding) algorithm is presented to
encode the crack subsections and extract the direction features, and a Delaunay Triangulation technique is employed to analyze
the crack region structure and extract the density features. As regarding skeletonized crack sections rather than crack pixels, the
spatial distribution features hold considerable feature significance for each type of cracks. Empirical study indicates a classification

precision of over 98% of the proposed approach.

1. Intreduction

Pavernent crack types are important for pavemnent dilapida-
tion analysis and pavement maintenance decision-making.
For asphalt pavernents, the pavement cracks can generally
be classified into four types-—the transverse crack, the
longitudinal crack, the block crack, and the alligator crack
[1] (see Figure 1). Each type of crack holds its own weight
in the pavement maintenance evaluation. Therefore, the
exploration of a robust and reliable approach for pavermnent
crack classification has great significance.

Over the past several decades, with the development
of high-speed cameras and large storage hardware, a real-
time collection of pavement images has been realized. While
along with the progress of image processing and pattern
recognition techniques, the image-based crack recognition
method gradually replaces the traditional manual method
and becomes a common way for pavement crack detection
[2-7]. Pavement crack recognition includes two stage
the crack detection and the crack classification. This paper
mostly focuses on the later.

Though a variety of approaches for pavement crack
classification have been proposed in the last two decades,
most of them canpot meet the requirements in practice
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due to their inadequate consideration on spatial distribution
features of the cracks. For example, the projection histogram
methods [8-10] can be qualified to identify the directional
difference between cracks, but it may not be capable of
distinguishing the density difference. In a pavement image,
typically, a ¢rack has a linear or curvilinear structure, the
spatial distribution of the crack points determines which
type of crack it is. Therefore, analyzing the crack’s spatial
distribution features, thatis, the direction feature and density
feature, is the key point to crack classification. Tn this study,
a novel pavement crack classification approach is proposed
by using spatial distribution features in a neural network.
Under this approach, the problem of crack feature extraction
is formulated as the problem of direction and density feature
extraction on a binary skeletonized crack section. Generally,
the transverse and longitudinal cracks hold much more
direction features than the block and alligator cracks, while
the block and alligator cracks have more density features.
Moreover, the block cracks own less density features than
the alligator cracks. According to these characteristics of
the different crack types, we present a direction coding
algorithm (D-Coding) stemming from Freeman coding [11]
to acquire the direction features from skeletonized crack
sections, meanwhile we adopt the Delaunay Triangulation
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Efficient Calibration of a Laser Dynamic
Deflectometer

Qingquan Li, Qin Zou, Member, IEEE, Qmgzhou Mao, Xiaoyu Chen, and Bijun Li

Abstract—The bearing capacity of the road pavement is one
of the most important indices that reflect the road condition. To
collect such data, various deflectometers were developed in the
past three decades. Note that the newly developed Traffic-Speed
Defiectometer (TSD) declares to perform a nondestructive mea-
suring at traffic speeds. However, TSD is limited as it needs more
than 4 h to calibrate the system before a measuring task. This
paper introduces a Laser Dynamic Deflectometer (LDD) devel-
oped at the Transportation Research Center of Wuhan University.
L.DD applies four laser Doppler sensors mounted on a measuring
beam to capture the deflection velocity of the pavement surface.
Unlike TSD using a servo to keep the beam static, LDD utilizes
a gyroscope to measure and compensate the vibration of the
beam. Moreover, in the procedure of calibration, LDD applies an
efficient relative-motion method to caleulate the relative angles
between each two Doppler lasers, which reduces the time of system
calibration to abont 2 k.

Index Ferms—Bearing capacity, defiectometer, Kuler-Bernoulli
equation, laser doppler, laser sensor application.

I INTRODUCTION

HE bearing capacity is an important indicator for the
struetural condition of the road. In clvil engineering, a
road is required to be constructed with a bearing capacity
complying with a certain standard. Therefore, all newly con-
stracted roads should be undertaken a measarement of bearing
capacity, Meanwhile, due to continuous vehicle loadings and
enviroumental factors, the performance of the pavement struc-
ture would gradually be undermined, which may accelerate the
damage of the road. Thus, to help make in-time and reason-
able maintenance and rehabilitation decision, all longtime-used
roads should be pericdically diagnosed on their structural state,
i.e., the bearing capacity.
Iin order to measure the bearing capacity of road pave-
merts, various research efforts have been made in the past
three decades, and several kinds of systems have been de-

veloped, e.g., Falling Weight Deflectometer (FWD) [1]-[4],
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Light Falling Weight Deflectometer (LWD) [51-{7], Rolling
Dynamic Deflectometer (RDD) [81-[10], Rolling Wheel De-
flectometer (RWD) [11], and Road Deflection Tester (RDT)
[12], etc. However, most of them have limitations inthe practice
of road testing due to several reasons, e.g., high operation
cost, low efficiency, low safety, traffic interruptions, etc. Given
the successful applications of high-precision and high-speed
laser Doppler sensors in measuring the velocity of moving
objects [13]-[15], a traffic-speed measurement of the structural
strength of the road has gradnally been possible. Note that,
the Traffic-Speed Deflectograph (TSD) [16}-{26] developed by
Greenwood company is a continuous deflection measuretnent
system, which uses high-speed laser Doppler sensors 1o mea-
sure the deflection velocity of the pavement and employs the
Fuler-Bernoulli equation to calculate the deflection range of
the pavement. Since performing a fast and continuous mea-
surement, and providing a safe environment for the operators,
TSD is counted as the state of the art among the relative
techniques.

However, TSD still has limitations in its geometric calibra-
tion. TSD applies four laser Doppler sensors to measure the
deflection velocity of the road surface, where three of them,
named L1, Ly, and Ly, are used to capture the deflection
velocity of three points in the deflection bowl, and one, named
7y, i taken as reference. In order to ensure the accuracy of
the measurement, TSD should be calibrated before a measuring
task, where some geometric parameters of the system should
be found. In this calibration procedare, the most important part
is to calculate the angles between each of the thiee measuring
laser Doppler sensors, Lo, L, Lo, and L, and the reference
lager Doppler sensor, i.e., Ly. To gain the values of these an-
gles, back-calculation methods were used [18], [21], [23]. The
initial calibration procedure was proposed by the Greenwood
compary, which involved removing the five tonne lead ballast
and rumning the TSD over a stiff concrete pavement. Under the
assumption that the stiff road deflects little under the reduced
load, the calibration angles of the measnrement lasers can be
caleulated in a back-calculation way. However, this calibration
phase was delicate and may commonly take up to a half-day
to finish [18]. Improved methods were exploited in [21], [23],
where accelerometers were applied to calculate the deflection
under the running load of TSD. This calibration procedure
mvolved installing accelerometers under the pavement surface,
which was also complex and time consuming,.

In this paper, a new calibration method based on the idea of
relative motion is proposed to efficiently calculate the geomet-
ric parameters. In this method, the relative angles between each
two Doppler lasers are gained by moving a profile table under

0018-9455/$31.00 © 2013 I[EEE
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Most existing approaches for pavement crack line detection implicitly assume that pavement cracks in images are
with high contrast and good continuity. This assumption does not hold in pavement distress detection practice,
where pavement cracks are often blurry and discontinuous due to particle materials of road surface, crack degra-
dation, and unreliable crack shadows. To this end, we propose in this paper FoSA — F* Seed-growing Approach for
automatic crack-line detection, which extends the F* algorithm in two aspects. [t exploits a seed-growing strategy
to remove the requirement that the start and end points should be set in advance. Moreover, it narrows the global
searching space to the interested local space to improve its efficiency. Empirical study demonstrates the correct-
ness, completeness and efficiency of FoSA.

® 2011 Elsevier B.V. All rights reserved.

1. Introduction

The detection of curvilinear structures, also referred to as lines, is a
fundamental low-level operation, which has been adopted in various
applications in computer vision and pattern recognition [1-3]. In gener-
al, line-detection algorithms can be classified into two types: local and
global algorithms. The former exploits local features, such as intensity,
gradient and local variance, to achieve goals of line enhancement and
segmentation. It involves a series of edge detection operators [4, 5], mor-
phological filter [6], steerable filter [7], and isotropic non-linear filter [2].
The later tracks and extracts lines in an overall view through dynamic
programming to optimize target functions to a certain criterion. It con-
sists of MAP statistic model (8], graphic model [9-11], snake model
[12, 13), and decision tree model [3).

A pavement crack is typically with a curvilinear structure, A variety
of approaches for pavement crack detection have been proposed in the
last decade, but most of them cannot automatically detect cracks owing
to grain-like characteristics of the road materials. They implicitly as-
sume that speckle noises in image background are in low-level, and
pavement cracks in images are with high contrast and good continuity.
However, this assumption does not always hold in real world due to
two reasons. One is that pavement images usually are mixed with the
grain-like textured background, which acts as speclde noises that signif-
icantly affects the detection accuracy. The other is that cracks in pave-
ment images are characterized by low Signal-to-Noise Ratio (SNR},
low contrast, and bad spatial continuity.

' This paper has been recommended for acceptance hy Paolo Remagnino.
* Corresponding author at: Transportation Research Center, Wuhan University,
Wuhan 430079, China Tel.: + 86 2768778039; fax: + 86 2768778043,
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Figure 1(a) shows a typical pavement image, Fig. 1(b} and (c) are
the results from traditional local methods stemming from Canny edge
detection [4] and wavelet transform [ 14]. As cracks are line-like struc-
tures on a large scale, these methods, that use small scale information,
tend to extract only fragments of them.

In this paper, we propose FoSA — F* Seed-growing Approach for
crack-line detection by extending the F" algorithm, which takes advan-
tage of dynamic programming to track linear structures in a global
view. It presents a seed-growing strategy to eliminate the requirement
in the F* algorithm that the start and end points for tracking should be
set beforehand. Thus, FoSA is capable of automatically identifying the
start and end points. It also puts forward an interest-constrained tech-
nique which narrows the global searching space to the local space, and
hence dramatically improves the efficiency of the F* algorithm. In fact,
FoSA formulates the crack extraction problem as a seed-growing prob-
lem. It uses a filtering based on average path cost {ie., APC-based filter-
ing) over the crack element set to aggregate crack seeds with high
credibility. With these seeds, FoSA presents an F* seed-growing algo-
rithm (ie., FoS) to collect crack strings. Finally, FoSA conducts pruning
and linking operations to refine the crack strings and extract the whole
identified cracks.

The rest of this paper is organized as follows. Section 2 briefly over-
views the related work on pavement crack detection. Section 3 intro-
duces the F* seed-growing algorithm. Section 4 discusses FoSA in
detail. Section 5 reports our empirical study and Section 6 concludes
our work by pointing out future directions.

2. Related work

Intuitively, image-based techniques are fundamental in pavement
crack detection, which have received intensive attention since the
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Features for Crack Detection
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Abstract—Cracks are typical line structures that are of interest
in many puter-vision applicati In practice, many cracks,
e.g., pavement cracks, show poor continuity and low contrast,
which brings great challenges to image-based crack detection by

using low-level features. In this paper, we propose DeepCrack

- an end-to-end inable deep ¢ lutional neural network
for ic crack d jon by learning high-level features
for crack rep ion. In this hod, multi-scale deep con-

volutional features learned at hierarchical convelutional stages
are fused together to capture the line structures. More detailed
representations are made in larger-scale feature maps and more
holistic representations are made in smaller-scale feature maps.
We build DeepCrack net on the der-decoder archi e of
SegNet, and pairwisely fuse the convolutional features generated
in the encoder network and in the decoder network at the
same scale. We train DeepCrack net on one crack dataset and
evaluate it on three others. The experimental results demonstrate
that DeepCrack achieves [-Measure over 0.87 on the three
challenging datasets in average and outperforms the current
state-of-the-art methods.

Index Terms—line detection, edge detecti
crack detection, convolutional neural network.

I. INTRODUCTION

Cracks are common defects that can be found on surfaces
of various types of physical structures. e.g., the road pave-
ment [1], [2]. the wall of nuclear power plants [3], the ceiling
of tunnels [4], etc. Repairing cracks is an important task for
preventing the expansion of harms and keeping the safety
of engineering infrastructures. For example, a crack on the
highway pavement will easily become a hole in just one rainy
night, which will then be hazardous for high-speed vehicles.
For a country like China or US, there are over 100,000 Km
highway to be tested and maintained periodically. Automatic
testing methods are greatly desired to improve the testing

efficiency and reduce the cost. Crack is one of the most
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common defects. Fixing a crack before its deterioration can
greatly reduce the cost of maintenance. Up to date. fully
automatic crack detection from noise background is still a
challenge.

As a crack is visually a linear/curvilinear structure, crack
detection can be formulated as line detection, which is a
fundamental problem in computer vision [5}={7]. In visual
perception, a crack can be characterized from two perspectives.
From a global perspective. it looks like a one-pixel wide edge
in the image. as it is thin and often holds jumping intensity to
the background. From a local perspective, it is a line object that
has a certain width. Accordingly, the crack detection methods
can be roughly divided into two categories: edge-detection
based ones and image-segmentation based ones. In the ideal
case, if a crack has good continuity and high contrast, then
traditional edge detection and image segmentation methods
could detect it with high accuracy.

However, in practice cracks may constantly suffer from
noise in the background, leading to poor continuity and
low contrast. For example, in the pavement image shown in
Fig. 1(a), impulse noises brought by the grain-like pavement
texture break the crack and undermine its continuity, while
the shadow reduces the contrast between the crack and the
background. In addition, the direction of exposure may also
impact the imaging quality of the crack. These complications
commonly lead to degraded performance of the traditional
low-level feature based crack detection methods.

In recent years, deep convolutional neural network (DCN-
N) has demonstrated state-of-the-art, human-competitive, and
sometimes better-than-human performance in solving many
computer vision problems, e.g., image classification [8], object
detection [9]. image segmentation [10], [11]. etc. For line
detection, DCNN-based methods have also been proposed for
tasks such as edge detection [12], [13]. contour detection [14],
[15]. boundary segmentation [16], [17] and so on. These
deep architectures build high-level features from low-level
primitives by hierarchically convolving the sensory inputs.

In particular, when using deep learning for edge detection,
it has been observed that, the convolutional features become
coarser and coarser in the convolving-pooling pipeline, and
the detailed features in larger-scale layers and the abstracted
features in the smaller-scale layers can be fused together
to improve the performance of edge detection [13]. [18],
[19]. When using deep learning for image segmentation, for
example the SegNet [20]. the convolutional features in the
decoder network have been found to be useful to improve
the performance of ic image ion, and the

=
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Laser-Aided INS and Odometer Navigation System for
Subway Track Irregularity Measurement

Qingquan Li'; Zhipeng Chen? Qingwu Hu?; and Liang Zhang*

Abstract: Track iregularity is one of the most important factors in the regular maintenance and overhaul work needed to determine the state
of a railway for safe operation. In this paper, a mobile approach to the measurement of subway track irregularity is proposed. A high-precision
three-dimensional (3D) curve of railway track was surveyed by a track tolley equipped with a laser-aided inertial navigation system (INS)
/odometer navigation system. Models for measuring the alignment, vertical, cant, and twist irregularities were established. These four types of
irregularities were estimated using the 3D track curve. To solve the problem of inherent drift of the INS/odometer system, a laser scanner on
the trolley was used to obtain observations of control points along the rail track for position updates. Measurements of real track irregularities
were conducted to validate the proposed method. The experimental results indicate that this approach has good repeatability. The accuracy of
track-irregularity measurements meets the technical requirements of the Shenzhen Metro in China. DOI: 10.106 1/(ASCE)SU.1943-

S428.0000236. © 2017 American Society of Civil Engineers.

Author keywords: Track irregularity: Mobile mapping; Laser scanning; Light detection and ranging (LiDAR); Inertial navigation.

Introduction

Track irregularity is a main source of ground-borne vibration and
noise, and it can also lead to track deterioration and operational
safety problems if it is not well monitored. It is one of the most im-
portant factors in regular maintenance and overhaul work for esti-
mating the state of a railway (Liu et al. 2015; Luber 2009). Because
subway mileage and the train speeds are increasing rapidly in
China, the task of railway maintenance is becoming more and more
difficult. An accurate and efficient measuring technique is necessary
to confront this challenge.

The mobile measurement method is the preferred choice for
rapid railway inspection. Currently, there are mainly two categories
of methods of measuring mobile track geometry. Longer wave-
lengths track irregularities are measured by track-recording coaches
(TRC) under wheel loading as a standard method, whereas shorter
wavelength roughness is measured by accelerometer-based trolleys
or mechanical displacement probes without wheel loading on for
complementation (Nielsen et al. 2013). Either TRCs or trolleys can
provide continues measurement. For these continuous measuring
systems, the positioning and orientation of the platform are key
technologies, since they help to build up a consistent reference
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frame that will determine the final accuracy of measurement. It is
usual for TRCs to be equipped with GNSS (Global Navigation
Satellite System) receivers for positioning and inertial sensors to
detect track irregularities. The measured acceleration and angular
rate are integrated into the relative displacement of the platform
from which track irregularity is estimated. However, the GNSS sig-
nal is not always available in certain cases, such as in canyons or
tumnels. Positioning accuracy will decrease dramatically in these
cases. Hand-held trolleys, such as the widely used Amberg GRP se-
ries (Engstrand 2011), are positioned by observing the control net-
work along the railway through a motorized total station. This
method can reach a high level of precision: however, it is not effi-
cient enough for long-distance operation, because the change of
position of total station is time-consuming. To address this problem,
a high-precision method of measuring mobile track irregularities
that uses GNSS/INS integration has been proposed (Chen et al.
2015). However, it is not available in the subway environment.
Because the time slots for rail maintenance of existing subway lines
are limited as a result of high traffic volumes, traditional track ge-
ometry measurement methods cannot meet both the accuracy and
efficiency requirements simultaneously.

The key issue in the mobile inspection of subway rails is how
to accurately determine the position and attitude of the mobile
platform in a GNSS-free environment. Mainly two categories of
methods focus on this problem, namely, those that use global
position information and those that do not. A simultaneous local-
ization and mapping {SLAM)-based (Durrant-Whyte and Bailey
2006) local positioning method is a typical solution that does not
require global position information. It realizes localization and
mapping simultaneously in unknown environments. The mobile
platform positions itself through matching current sensor data to
the built map, which in turn helps to build the map of environment
incrementally. There are many two-dimensional (2D) or three-
dimensional (3D) applications indoors, in mines, or in any other
GNSS-free environment, because of the self-contained property.
Kohlbrecher et al. (2011) incorporated a robust scan-matching
approach using a light detection and ranging (LiDAR) system
with a 3D attitude-estimation system based on inertial sensing.
The inertial sensor is aided by the measurement of scan matching
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Asphalt pavement defects e.g. cracks, potholes, rutting, often cause significant safety and economic problems,
thus, to automatic detect these defects is vital for pavement maintaining and management. The fact that 3D
defect detection methods is superior to traditional 2D methods and manual survey methods in terms of accuracy
and comprehensiveness has been widely recognized. Based on 3D laser scanning pavement data, an automatic
defect detection method is proposed to detect pavement cracks and pavement deformation defects information
simultaneously in this paper. Specifically, a sparse processing algorithm for 3D pavement profiles is first de-
signed to extract crack candidate points and deformations support points, these processing is based on the
assumption that the cracks are microscopic local defects while deformations are macroscopic defects in profiles.
Then, the crack information can be detected by combining the extracted candidate points and an improved
minimum cost spanning tree algorithm. On the other hand, the deformation depth information is acquired based
on the profile standard contours which are constructed by profile envelopes and deformation support points, the
accurate location and classification information of deformation defects can be obtained by the regional depth
property. Experimental tests were conducted using real measured 3D pavement data containing two categories
of defects. The experimental results showed that, based on the 3D laser scanning data, the proposed method can
effectively detect typical cracks under different road conditions and environments, with the detection accuracy
above 98%. Furthermore, different types of deformation defects including potholes, rutting, shoving, subsidence,
can also be accurately detected with location error less than 8.7%.

1. Introduction automatic defect detection is a highly attractive problem.

In the past two decades, various of 2D imaging based systems and

Pavement cracks, potholes, rutting, shoving and subsidence are the
common forms of pavement defects [1], these typical pavement con-
dition evaluation indicators are essential for pavement maintaining and
management [2-5,7]. Some typical defects on the pavement reflect
different depth and geometric features. For example, a crack often
shows as an obvious linear structure [2,3,6], it generally holds a width
greater than 1 mm and displays lower depth than the non-crack pave-
ment background. A rutting is mostly resulted from the frequent traffic
loads on pavement, which has certain width, depth and continuous
length. Potholes [8-10] and subsidence are often featured with large
area of deeper depth and deformation, and a shoving holds a certain
higher elevation than normal pavement. These common pavement de-
fects, often cause significant safety and economic problems, thus the

* Corresponding author.

associated algorithms for pavement measurement have been developed
for collecting in situ data to evaluate pavement conditions [2,3,11-15].
However, these traditional 2D image analysis-based pavement defect
detection methods often suffer from their inability to discriminate dark
areas not caused by pavement defects such as shadows and poor illu-
mination [16-18,21]. Moreover, the 2D methods cannot detect some
defects due to the lack of depth information [6]. The 3D laser scanning
data has been proven its ability of obtaining the depth information and
less vulnerable to lighting conditions [19,20], 3D laser technology has
become the dominant approach to automatic pavement data collection
in recent years [4,21,22].

Many studies were conducted to detect pavement defects based on
3D pavement data. Laurent et al. adopted an auto-synchronized laser
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